
Modelling of Input-Parameter Dependency for Performance Predictions of
Component-Based Embedded Systems

Egor Bondarev1,2, Peter de With2, Michel Chaudron1 and Johan Muskens1

System Architecture and Networking1 and Video, Coding and Architectures2 groups
Eindhoven University of Technology, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
E.Bondarev@tue.nl

Abstract

The guaranty of meeting the timing constraints
during the design phase of real-time component-based
embedded software has not been realized. To satisfy
real-time requirements, we need to understand
behaviour and resource usage of a system over time. In
this paper we address both aspects in detail by
observing the influence of input data on the system
behaviour and performance. We extend an existing
scenario simulation approach that features the
modelling of input parameter dependencies and
simulating the execution of the models. The approach
enables specification of the dependencies in the
component models, as well as initialisation of the
parameters in the application scenario model. This
gives a component-based application designer an
explorative possibility of going through all possible
execution scenarios with different parameter
initialisations, and finding the worst-case scenarios
where the predicted performance does not satisfy the
requirements. The identification of these scenarios is
important because it avoids system redesign at the
later stage. In addition, the conditional behaviour and
resource usage modelling with respect to the input
data provide more accurate prediction.

1. Introduction

Presently, industrial focus in embedded software is
shifting from improving implementation techniques
towards improving system design methods. The
advanced design methods allow evaluation of the
system functionality and performance already at very
early production phases, which reduces technical risks
and minimizes time-to-market.

Advanced design techniques become imperative
especially for time-critical software-intensive
embedded systems. The real-time requirements
imposed on these systems, such as signal latency
limitations can only be validated when the system is
implemented. A performance test failure can cause a
complete iteration in the development process, thus
taking additional time and money. To avoid system
redesign for ensuring performance properties, we
concentrate on the accurate prediction of the system
extra-functional properties at an early design phase.

We have adopted the so-called Robocop
component-based architecture [3] for conducting our
research on methods for predictable software design.
As any component-based framework, it allows: (a)
decomposition of large-system functionality into
variable-scale composable blocks, which eases the
system maintenance and evolution; (b) wide reuse of
the existing components, which reduces development
cost and time-to-market.

Application performance properties (CPU usage,

memory and bus load, etc) vary within a broad range
during the application execution. These variations may
depend on many factors: execution platform, current
system configuration and state of the application.
However, the primary influential factor is input
parameter data. The input parameter data frequently
predefines data flow and control flow in the
application. For instance in a video encoding
application, one of the input parameters is the frame
size. Depending on the current size of frames to
encode, the encoder uses different amounts of
processing resources, and even deploys different
encoding paths (control flows). This covers the
influence of only one key input parameter. Therefore,

in this paper we include input parameter dependency
into our models with the aim to come to more accurate
prediction of time-detailed performance of component-
based systems.

SPE is one of the first approaches which provide a

technique for evaluating the performance of software
systems [17]. That approach can be enhanced if
specialized for component based software engineering
[18]. Recently, the UML Profile for Schedulability,
Performance and Time [1] has been introduced by the
OMG standardization group. In the domain of
component-based systems there are several in-depth
approaches [7] [8] [9], representing engineering
practice to the prediction problem. A very promising
technique that allows design-time estimations of real-
time properties of component-based systems is
presented in [10]. In this technique, many possible
types of software constructions are taken into account,
like synchronous and asynchronous communication, as
well as synchronization constraints. A solid method
based on formal specification of non-functional
properties of component-based software is presented in
[12]. However, none of the above-mentioned
approaches deals with input data dependencies, so that
they all provide relatively lower accuracy of
performance prediction. The influence of the input
parameters was reported earlier in literature, but the
approaches exist only for low level of coding
paradigms [13] [14]. At a higher level of coding
abstraction, so-called Parametric Performance
Contracts have been introduced in [16]. The
dependency on the input data is also addressed in [2].
The proposed method allows specifying performance
contracts parameterized by input values of objects.

Our contribution in this paper is an extension of a

scenario simulation approach for performance
prediction [11] with modelling of input parameter
dependent behaviour and resource usage for real-time
applications. The extension gives a designer an
explorative possibility of validating all possible
execution scenarios, ranging from best-case to worst-
case. The approach is targeted at the domain of
component-based applications, where the problem of
addressing the input data dependencies remains an
unsolved problem.

 This paper is structured in the following way.
Section 2 refers to the Robocop component-based
architecture, as a deployment framework for the
proposed technique. Section 3 gives classification of
input parameters in a component-based system.
Sections 4 and 5 discuss the workflow of the proposed

approach and give specifications of the models
involved. Section 6 explains the task reconstruction
algorithm as one of the phases of the workflow. In
Section 7, we discuss the simulation and schedulability
analysis phases of the workflow. Section 8 concludes
with the benefits and drawbacks of the proposed
approach.

2. Robocop Component Based Architecture

We have adopted the Robocop Component-Based

Architecture (CBA) [3] for conducting our research on
predictable software design, because it offers software
reuse and speeds up the development. The Robocop
architecture is developed for middle-ware in consumer
devices, with the emphasis on robustness and
reliability. The Robocop CBA is similar to CORBA
[5], COM [4] and Koala [6] but enables more efficient
realization of real-time and performance constraints via
modelling techniques.

A Robocop component is a set of possibly related
models. (see Figure 1). Each model provides a
particular type of information about the component.
Models may be in human-readable form (e.g. as
documentation) or in binary form. One of the models is
the executable model, which contains the executable
component. Other examples of models are: the resource
model (rm � RM) and the behaviour model (bm �
BM). The Robocop component model is open in the
sense that new types of models can be added.

Figure 1. Example Robocop component model

A Robocop component can be specified in a formal

notation:

RC = þ(M) × þ(M × M × T) ;
M = EM U BM U RM U … ;
T = MODELTYPE × MODELTYPE × NAME ;

we assume there is a function �,
� : M � MODELTYPE ;

where RC is a set of Robocop components,
þ(M) is a power set of model types, and T is a
set of relations between the models.

An executable component offers functionality

through a set of ’services’ belonging to þ(S) (see Figure
2). Services are static entities that are the Robocop
equivalent of public classes in object-oriented (OO)
programming languages. Services are instantiated at
run-time. The resulting entity is called a ’service
instance’, which is the Robocop equivalent of an object
in the OO paradigm.

Service1 Service2

Figure 2. Example of executable component

A Robocop service s may define several interfaces

(ports). We distinguish a set of ‘provides’ ports PR and
a set of ‘requires’ ports REQ. The former defines
interfaces I that are offered by the service, while the
latter defines interfaces that the service needs from
other services in order to operate properly. An interface
I is defined as a set of implemented operations O. A set
of services S is formally specified by:

S = þ(PR) × þ(REQ) ;
PR,REQ = NAME × I ;
NAME = STRING ;
I = þ(O) ;
O = set of operations o.

3. Classification of Input Parameters

Behaviour and resource usage of any system depend

on its current state, instruction set and input parameters
for these instructions. Prior to modelling the input
parameter dependencies, we have analysed what kind
of parameters normally influence system operation.
Within the component-based paradigm, we distinguish
two types of parameters for a component: (a) external
or environmental parameters, and (b) internal or
operation arguments.

External parameters are normally application-level
attributes. For example, in a video decoding
application, the external parameter for all rendering
components (reader, decoder, renderer) can be the
‘number of pixels per picture’. This attribute is
predetermined by the format of the actual video
sequence, thus, by the application. The external

parameters can be classified into two types:
configuration and dataflow-based (see Figure 3).
Configuration parameters provide the means for
external application control and result in direct settings
for the component state and behaviour. An example is
the setting of a ‘perceived quality profile’ for a
decoding component. Dataflow-based parameters
(‘number of pixels per picture’) influence the
component behaviour and resource usage in an indirect
way.

Figure 3. Inputs for external parameters

Internal component parameters are arguments of an

operation o, implemented by service s. Specifying
internal parameter dependencies gives higher
prediction accuracy for performance in comparison
with external parameters, because they are inside of the
actual code and lead to more fine-grained control. Note
that in some cases external and internal parameters
have overlapping influence and cannot be easily
classified. For example, an operation
Decoder.decodeFrame(int numberOfPixels) can
exist, where the ‘number of pixels’ parameter is also an
internal parameter of a component.

4. Scenario Simulation Approach

In the component-based software development, a

real-time application developer should satisfy given
real-time, performance and functional requirements,
when he builds his application on the basis of available
components. The scenario simulation approach enables
early predictions of the performance properties of a
designed application, which help to reason about its
quality attributes at early stages of development.

The approach is based on three concepts:
1. models of the system component’s behaviour

and resource usage,
2. execution scenarios of the complete system, in

which the resources are potentially
overloaded,

3. simulation of these scenarios, resulting in
timing behaviour of the designed system.

In order to support the smooth interaction and
deployment of the above points, we have developed a

new tool, called Real-Time Integration Environment
(RTIE).

The workflow of our approach is described in [11]
in detail. In this section we focus on the aspects related
to the input parameter dependencies, its modelling and
initialisation.

The implementation of our approach is based on
four phases (see Figure 4).

Input

Application
requirements

Real-time aware
components

Design (compose)

Real-time
application

Models
Component

Resource model
Component

Resource model

Component
Behaviour model

Component
Behaviour model

has

has

Compile /
reconstruct tasks

Pool of tasks
in application

Simulate task
execution

Task execution
timeline

Verify

Real-time and performance
properties

Analyze

Predicted for

Construct
Application

Scenario model
Application

Scenario model

Specify input
parameter

dependencies

Initializes
input

parameter
values

Figure 4. Workflow phases of the scenario

simulation approach

Phase 1. A component developer specifies the

behaviour and resource models of a real-time aware
component. These models should be supplied along
with the executables of the component. Within this
task, a component developer identifies the external and
internal input parameters that influence the component
behaviour and resource usage. He finds out
(empirically or analytically) the cost functions
Resource_Useoperation = ƒ(parameter) and
Behaviouroperation = g(parameter) for each of the
operations, resource types and parameters. Finally, he
inserts the cost functions in the component behaviour
and resource models. The model structures are
specified in Section 5.

Phase 2. An application (system) developer

graphically composes a real-time application from the
set of available components using the RTIE tool. He
defines resource-critical scenarios and for each of them
specifies an application scenario model. Critical
scenarios are the application execution configurations
that may introduce processor, memory or bus overload.
Finally, for each critical scenario, a developer
initialises (gives a value to) all input parameters of the
constituent components and stores the value into the
corresponding scenario model. Consequently, the result
of this phase is a set of critical execution scenarios,

which sometimes may differ only in the parameter
values.

 Phase 3. The application scenario, component

resource and component behaviour models are jointly
compiled by the RTIE tool. The objective of the
compilation is to reconstruct (generate) the tasks
running in the application. Prior to compilation, the
task-related data is spread over different models. For
instance, the task periodicity may be specified in an
application scenario model, whereas the operation call
sequence comprising the task is specified in relevant
component behaviour models. The compiler
reconstructs all necessary properties of the tasks, like
deadline, period, priority and operation call sequence.

Phase 4. An application developer schedules the

reconstructed task pool (by the RTIE tool), simulating
the execution of the defined scenario. The simulation
scheduling policy of the application execution should
be compliant with the scheduling policy of the
operating system. The resulting data from the scheduler
is a task execution timeline. This timeline allows
extracting the real-time, memory- and bus-related
performance properties of an application. A
comparison between the predicted data with the
application requirements, allows us to quantitatively
assess the design of the application. If any of the
requirements are not satisfied, a developer may
optimise the composition or find other design
alternatives and repeat the workflow.

5. Model description

The purpose of this section is to specify the models

introduced in the previous section. It is emphasized
here that the models are not a goal by themselves, but
are required for obtaining the resource consumption
and timing properties.

5.1. Resource Model

The Resource Model specifies the resource usage

for all the operations implemented by services of an
Executable Component (see Figure 5). The resource
usage properties of an operation may result from either
average-case or worst-case analysis. These properties
are calculated only for the operation body itself, and
they exclude resource consumption properties of called
operations. This technique allows the calculation of the
resource consumption of any sequence of operation
calls. The resource model is specified for a particular
reference platform.

���������	�
��

������

����������	�
��

������

������	�

������	�
��

������

�
���

����	�
��

���������
����

����
���	
���

�

����
����

������
���
�
�����

�
�
�������
���

�������

������
���
�
�����

������������

���

�

���������
	

��� �

���	
���

�

���	
���

�

���������� �

�
����������

�

�

������
���������
����
����

���

�������	���

���

���

��	�	�
���

���

Figure 5. Resource Model Representation

The resource usage can be specified for any type of
resource. We propose to model scarce major hardware
resources: processor, memory and bus (network). The
predicted resource consumption is specified as a
(claim{bytes}, release{bytes}) tuple for memory; and
(claim{bytes}, time{ms}) tuple for network-type
resources. For processing resources, the consumption is
specified as a single (claim{ms}).

The resource usage depends on the value of external
and internal input parameters. These dependencies are
specified as a cost function. Let us briefly define this in
more detail. We specify a cost function as the product
of the operations and the input parameter influencing
the resource usage of these operations. For each
resource type r ∈ R, the model provides a function that
maps a product of the following elements:

(1) operation implementation,
(2) vector of values of external parameters and
(3) vector of values of internal parameters,

into a sequence of natural numbers that represents the
resource usage.

More formally, a cost function (Oimp × VVEP × VVIP

� Nat*) gives the cost (c � Nat*) for an operation
(oimp � Oimp). Per resource r there can be multiple cost
functions þ(Oimp × VVEP × VVIP � Nat*). The resource
model results in a set of used resources:

R = { ri , ∀ i | ri = þ(Oimp × VVEP × VVIP � Nat*)};

where the parameters are explained by

Oimp – operation set implemented by the component,
VVEP is a vector of values of external parameters,
VVIP is a vector of values of internal parameters,
Nat* is a sequence of natural numbers (for instance,
claim and release).

The parameter values are initialized later by

application developer in the scenario model.

5.2. Behaviour Model

The behaviour model specifies the behaviour of all

operations Oimp implemented by services of an
executable component. A part of the model is shown in
Figure 6.

Figure 6. Behaviour Model Representation

Conceptually, the operation behaviour is specified
as a sequence of external operation calls (to other
interfaces) made inside the implemented operation. For
example in Figure 7, the implemented operation
Controller.updatePosition() has a behaviour
described by the following call sequence:
{IData.refreshData(), IControl.move()}. The
IData and IControl are the interfaces provided by
Sensor and Actuator services, respectively.

Figure 7. Sequence of operation calls
(behaviour) of updatePosition() operation.

The operation behaviour may depend on the input

parameters. In this case, the component developer can
model these dependencies by again specifying cost
functions. For each operation oimp � Oimp implemented
by the component, the model may provide a function
that maps a threefold product of:

1) operation implementation,
2) vector of values of external parameters and
3) vector of values of internal parameters,

into a sequence of external operation calls with a set of
value vectors of arguments for each external operation.
More formally, this leads to

BM = (Oimp × VVEP × VVIP) � (O × VVIP)*;

where

Oimp is a set of operations implemented by the
component,
O is a set of external operations (provided by other
interfaces),
(O × VVIP)* is a sequence of external operation
calls made by each implemented operation oimp �
Oimp,
VVIP is a set of value vectors of internal parameters
(operation arguments).

The values of the parameters must be initialised

later in an application scenario model.
Note that also task triggers can be modelled within a

behaviour model. The reader is referred to [11] for a
description of this option.

5.3. Application Scenario Model

The application scenario model (SM) specifies the

application structure and behaviour for a critical or
commonly used execution scenario. Several SMs can
be built for an application, depending on a number of
scenarios that need to be validated. An application
developer is responsible for the scenario models
construction.

A scenario model consists of a composition
description, a set of parameter initialisation PI, and a
set of application-level task triggers T. Composition is
specified by SI (set of service instances si) and B (set of
bindings between the si). A binding b � B includes
information about the bound service instances si � SI,
and in/out ports of their interfaces pr � PR, req �
REQ. Task trigger t � T points to a first called
operation oimp � Oimp and contains a set of attributes
ATTR of the trigger (period, offset, jitter, inter-arrival
time, etc).

The scenario model should initialise all parameters
specified in the resource and behaviour models of the
components used in this scenario. Thus, parameter
initialisation pi is a given value vEP (vIP) residing within
the vector of values VVEP (VVIP). The scenario model
SM is defined by

SM = composition × PI × T;

where

composition = SI × B;
SI = S × NAME;
B = SI × PR × SI × REQ;
PI = (VEP � VVEP) x (VIP � VVIP);
T = Oimp × ATTR.

Once the scenario models are ready, an application

developer proceeds to the task reconstruction and
simulation phases of the workflow.

6. Task Reconstruction

In the task reconstruction phase, an application

developer brings together the application scenario
model and combined behaviour-resource models of the
components used in the application. At this stage, this
set of models can be compiled by RTIE tool. The goal
of the compilation is to identify and reconstruct a set of
tasks with their parameters such that the application
executes in a particular scenario.

The task reconstruction algorithm uses only the data
from the three above-mentioned models. These models
contain all in-application and in-component task
triggers, as well as operation call sequences that define
a flow of control for the tasks fired by the triggers.

The formal definition of the task reconstruction
algorithm can be specified as follows. Assume that
I.o(VIP) is the initial operation invocation of a task t.
We have omitted brackets for simplicity of notation.
The operation o is invoked with the initialised values
for the set of input arguments VIP (a set is indicated by
a capital). The subsequent invocations made by the
operation o can be found via the behaviour model of a
component (service) implementing this operation. The
function Expand(I.o(VIP)) yields a term that represents
the call-graph for an invocation I.o(VIP). This resulting
term includes sub-terms for each individual operation
invocation. For the operation o invocation the complete
call-graph can be specified as:

Expand(I.o(VIP)) =
I.o(VIP) ⊕ (Expand(I.o1(VIP1)) ⊗…⊗
Expand(I.on(VIP n)));

where ⊕ = ‘with the following added’ ,

 ⊗ = ‘sequence’
 o1 …on is a sequence of called operations of
operation o specified in a behaviour model.

The result of the above is a tree of operations, where
the sequence of operations is found when we traverse
the tree.

The input parameter dependent call-graph tree
represents a task in a system. The task invocation
periodicity, jitter, offset is known from the models. The
resource claims of the task comprising operations are
known (they may also be parameter dependent). Thus,
for a processing resource, we can calculate the task
execution time as a sum of claims of all operations
involved in the task call-graph.

For the controller example in Figure 7, the task
reconstruction works as follows: the related behaviour
model specifies the operation call sequence of the
operation updatePosition(): {refreshData(),

move()}. Afterwards, the compiler gathers from related
behaviour models the operation call sequence of the
latter two operations. The operation refreshData()
calls one operation belonging to other interfaces:
ILogData.logEvent()(see Figure 8).

Figure 8. refreshData() and move() behaviour.

Assume that operation ILogData.logEvent() is a leaf
operation. The operation move() also calls this leaf
operation: ILogData.logEvent() (see Figure 8). Thus,
the complete reconstructed sequence of the operations
executed in the task is as shown in Figure 9.

A resource consumption property of each operation
in this sequence is specified in the claim primitive of
the related component resource model (see Section
5.1). Knowing this data, we can calculate the total
resource consumption of the task. For example, the
CPU time used by the task (execution time) is the sum
of CPU times used by the operations composing the
task. In Figure 9, the total execution time of the task
amounts to: 50ms + 12ms + 5ms + 80ms + 5ms =
152ms.

Figure 9. Task reconstructed from the models.

The other task parameters (period, offset, and
deadline) and precedence are obtained from the
corresponding task trigger (Trigger1) properties
specified in the models.

7. Simulation and Schedulability Analysis

When the set of tasks in the scenario is identified, an

execution of this set is simulated by the RTIE virtual
scheduler. The simulation results for a processing
resource are represented as a task execution timeline
(see Figure 10).

Figure 10. Task execution timeline of scenario

The schedulability analysis of the simulation data
gives the predicted timing and performance properties
of an application. The response time, blocking time,
number of missed deadlines can be found for each task.
Beside this, the processor, memory and bus bandwidth
utilization bounds can be analysed per application
scenario. When playing with a range of values for
specified input parameters, a designer can find resource
overloading execution scenarios. This may lead to a
system (application) redesign. In any case, the
predicted performance properties are to be validated
with respect to the application requirements.

8. Conclusion

In this paper, we have proposed an extension to an
already existing scenario simulation approach for the
prediction of system timing and performance properties
at early stages of development. The extension enables
handling a design of real-time systems, of which the
resource consumption is heavily depending on the input
data parameters. The extension introduces a concept
for modelling of two dependency types: (1) input
parameter influencing the system resource usage, and
(2) input parameters influencing the behaviour of
operations in the system. The prediction approach
should be employed in the domain of component-based
software development. Therefore, two model
categories are introduced: a component model
specified during development of a component
(behaviour and resource models) and a scenario model
described during the composition of a system. In the
component model, the behaviour and resource usage
are specified as cost functions from the input
parameters. In the scenario model, these input
parameters are initialised, resulting in the instances of
exact behaviour and resource usage per scenario.
Furthermore, each specified execution scenario can be
simulated by our recently developed RTIE tool, giving
a predicted performance of a system.

We have validated the approach by a real-world
case study based on an object-oriented MPEG-4
decoding system [15]. Initial experiments without any
method calibration give already a prediction accuracy
on the performance within 10-30%. At the time of
writing, more experiments are conducted.

Besides exploring the input data dependencies for
the prediction accuracy, our proposal has a number of
additional benefits. The use of scenarios reduces
modelling complexity and avoids a state-space
explosion. The proposed technique can be applied to
any other component-based architecture (CORBA,
Koala). It can be used for different application domains
and for various architectural styles. For example, it
works for ‘blackboard’, ‘client-server’ and ‘pipe-line’
architectures. Finally, it is our opinion that the
proposed approach may lead to higher accuracy when
incorporating task synchronization constraints and
distinguishing synchronous and asynchronous
communication. This aspect requires more research in
the future.

The method has some limitations that need further
study. It provides no techniques for specifying the
component resource consumption for multiple
platforms. Besides this, we assume that a designed
system has no multiple processors and networks.

References

[1] OMG Group. UML Profile for Schedulability,
Performance and Time.
[2] Krone, J., Ogden, W.F., Sitaraman, M., Modular
verification of performance constraints. Technical Report
RSRG-03-04, Clemson University (2003)
[3] Robocop public homepage. [http://www.extra.research.
philips.com/euprojects/robocop/]
[4] D. Box. Essential COM. Object Technology Series.
Addison-Wesley, 1997.
[5] T. Mowbray and R. Zahavi. Essential Corba. John Wiley
and Sons, New York, 1995.
[6] R. van Ommering et al., “The Koala component model
for consumer electronics software”, IEEE Trans. Computer,
33 (3): 78-85, Mar. 2002.
[7] I. Crnkovic, et al., “Anatomy of a research project in
predictable assembly”. Proc. 5th ICSE Workshop on CBSE.
ACM, May, 2002.
[8] Kurt C. Wallnau. Volume III: A Technology for
Predictable Assembly from Certifiable Components. April
2003, Report CMU/ESI-2003-TR-009.
[9] S. A. Hissam, et al., Packaging Predictable Assembly
with Prediction-Enabled Component Technology. Nov.
2001, CMU/ESI-2001-TR-024.
[10] S. Hissam et al., Predictable Assembly of Substation
Automation Systems: An Experiment Report. Sept. 2002,
Report CMU/SEI 2002-TR-031.
[11] E. Bondarev, J. Muskens, P. de With and M. Chaudron,
“Predicting Real-Time Properties of Component Assemblies:
a Scenario-Simulation Approach”, Proc. 30th EUROMICRO
conf., CBSE Track, IEEE Computer Science, Sept. 2004.
[12] S. Zschaler, “Towards a Semantic Framework for Non-
functional Specifications of Component-Based Systems”,
Proc. 30th EUROMICRO Conf., Rennes, France, Aug./Sep.
2004, pages 92-99, IEEE Computer Science, Sept. 2004.
[13] F. Wolf, “Intervals in software execution cost analysis”,
Proc. 13th Int. Symp. on System synthesis 2000, ISBN 1080-
1082, 2000.
[14] H. Gautama, A. J. C. van Gemund, Performance
Prediction of Data-Dependent Task Parallel Programs,
Lecture Notes in Computer Science, vol. 2150, 2001
[15] E. Bondarev, M. Pastrnak, P. de With and M. Chaudron,
“On Predictable Software Design of Real-Time MPEG-4
Video Applications”, SPIE Proc. of VCIP’ 2005 conference.
Beijing, China. July, 2005.
[16] Viktoria Firus at al., Parametric Performance Contracts
for QML-specified Software Components. In Procs. FESCA
workshop 2005. Edinburgh, April 2005
[17] Smith, C.U., Williams, L.G., Performance Solutions: a
practical guide to creating responsive, scalable software.
Addison-Wesley (2002)
[18] Bertolino, A., Mirandola, R., CB-SPE Tool: Putting
Component-Based Performance Engineering into Practice.
Proc. 7th International Symposium on CBSE, Edinburgh,
UK. Vol. 3054 of LNCS, Springer (2004) 233–248

