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Abstract 
 

The guaranty of meeting the timing constraints 
during the design phase of real-time component-based 
embedded software has not been realized. To satisfy 
real-time requirements, we need to understand 
behaviour and resource usage of a system over time. In 
this paper we address both aspects in detail by 
observing the influence of input data on the system 
behaviour and performance. We extend an existing 
scenario simulation approach that features the 
modelling of input parameter dependencies and 
simulating the execution of the models. The approach 
enables specification of the dependencies in the 
component models, as well as initialisation of the 
parameters in the application scenario model. This 
gives a component-based application designer an 
explorative possibility of going through all possible 
execution scenarios with different parameter 
initialisations, and finding the worst-case scenarios 
where the predicted performance does not satisfy the 
requirements. The identification of these scenarios is 
important because it avoids system redesign at the 
later stage. In addition, the conditional behaviour and 
resource usage modelling with respect to the input 
data provide more accurate prediction.  
 
1. Introduction 
 

Presently, industrial focus in embedded software is 
shifting from improving implementation techniques 
towards improving system design methods. The 
advanced design methods allow evaluation of the 
system functionality and performance already at very 
early production phases, which reduces technical risks 
and minimizes time-to-market. 

Advanced design techniques become imperative 
especially for time-critical software-intensive 
embedded systems. The real-time requirements 
imposed on these systems, such as signal latency 
limitations can only be validated when the system is 
implemented. A performance test failure can cause a 
complete iteration in the development process, thus 
taking additional time and money. To avoid system 
redesign for ensuring performance properties, we 
concentrate on the accurate prediction of the system 
extra-functional properties at an early design phase. 

We have adopted the so-called Robocop 
component-based architecture [3] for conducting our 
research on methods for predictable software design. 
As any component-based framework, it allows: (a) 
decomposition of large-system functionality into 
variable-scale composable blocks, which eases the 
system maintenance and evolution; (b) wide reuse of 
the existing components, which reduces development 
cost and time-to-market. 

 
Application performance properties (CPU usage, 

memory and bus load, etc) vary within a broad range 
during the application execution. These variations may 
depend on many factors: execution platform, current 
system configuration and state of the application. 
However, the primary influential factor is input 
parameter data. The input parameter data frequently 
predefines data flow and control flow in the 
application. For instance in a video encoding 
application, one of the input parameters is the frame 
size. Depending on the current size of frames to 
encode, the encoder uses different amounts of 
processing resources, and even deploys different 
encoding paths (control flows). This covers the 
influence of only one key input parameter. Therefore, 



in this paper we include input parameter dependency 
into our models with the aim to come to more accurate 
prediction of time-detailed performance of component-
based systems.  

 
SPE is one of the first approaches which provide a 

technique for evaluating the performance of software 
systems [17]. That approach can be enhanced if 
specialized for component based software engineering 
[18]. Recently, the UML Profile for Schedulability, 
Performance and Time [1] has been introduced by the 
OMG standardization group. In the domain of 
component-based systems there are several in-depth 
approaches [7] [8] [9], representing engineering 
practice to the prediction problem. A very promising 
technique that allows design-time estimations of real-
time properties of component-based systems is 
presented in [10]. In this technique, many possible 
types of software constructions are taken into account, 
like synchronous and asynchronous communication, as 
well as synchronization constraints. A solid method 
based on formal specification of non-functional 
properties of component-based software is presented in 
[12]. However, none of the above-mentioned 
approaches deals with input data dependencies, so that 
they all provide relatively lower accuracy of 
performance prediction. The influence of the input 
parameters was reported earlier in literature, but the 
approaches exist only for low level of coding 
paradigms [13] [14].  At a higher level of coding 
abstraction, so-called Parametric Performance 
Contracts have been introduced in [16]. The 
dependency on the input data is also addressed in [2]. 
The proposed method allows specifying performance 
contracts parameterized by input values of objects. 

 
Our contribution in this paper is an extension of a 

scenario simulation approach for performance 
prediction [11] with modelling of input parameter 
dependent behaviour and resource usage for real-time 
applications. The extension gives a designer an 
explorative possibility of validating all possible 
execution scenarios, ranging from best-case to worst-
case. The approach is targeted at the domain of 
component-based applications, where the problem of 
addressing the input data dependencies remains an 
unsolved problem. 

  This paper is structured in the following way. 
Section 2 refers to the Robocop component-based 
architecture, as a deployment framework for the 
proposed technique. Section 3 gives classification of 
input parameters in a component-based system. 
Sections 4 and 5 discuss the workflow of the proposed 

approach and give specifications of the models 
involved. Section 6 explains the task reconstruction 
algorithm as one of the phases of the workflow. In 
Section 7, we discuss the simulation and schedulability 
analysis phases of the workflow. Section 8 concludes 
with the benefits and drawbacks of the proposed 
approach.  

 
2. Robocop Component Based Architecture 

 
We have adopted the Robocop Component-Based 

Architecture (CBA) [3] for conducting our research on 
predictable software design, because it offers software 
reuse and speeds up the development. The Robocop 
architecture is developed for middle-ware in consumer 
devices, with the emphasis on robustness and 
reliability. The Robocop CBA is similar to CORBA 
[5], COM [4] and Koala [6] but enables more efficient 
realization of real-time and performance constraints via 
modelling techniques.  

A Robocop component is a set of possibly related 
models. (see Figure 1). Each model provides a 
particular type of information about the component. 
Models may be in human-readable form (e.g. as 
documentation) or in binary form. One of the models is 
the executable model, which contains the executable 
component. Other examples of models are: the resource 
model (rm � RM) and the behaviour model (bm � 
BM). The Robocop component model is open in the 
sense that new types of models can be added. 

 

 
 

Figure 1. Example Robocop component model 
 
A Robocop component can be specified in a formal 

notation: 
 
RC = þ(M) × þ(M × M × T ) ; 
M  = EM U BM U RM U … ; 
T   = MODELTYPE × MODELTYPE × NAME ; 

we assume there is a function �, 
� : M � MODELTYPE ; 

where RC is a set of Robocop components, 
þ(M) is a power set of model types, and T is a 
set of relations between the models. 



 
An executable component offers functionality 

through a set of ’services’ belonging to þ(S) (see Figure 
2). Services are static entities that are the Robocop 
equivalent of public classes in object-oriented (OO) 
programming languages. Services are instantiated at 
run-time. The resulting entity is called a ’service 
instance’, which is the Robocop equivalent of an object 
in the OO paradigm. 

 

Service1 Service2

 
 

Figure 2. Example of executable component 
 
A Robocop service s may define several interfaces 

(ports). We distinguish a set of ‘provides’ ports PR and 
a set of ‘requires’ ports REQ. The former defines 
interfaces I that are offered by the service, while the 
latter defines interfaces that the service needs from 
other services in order to operate properly. An interface 
I is defined as a set of implemented operations O. A set 
of services S  is formally specified by: 

 
S   = þ(PR) × þ(REQ) ; 
PR,REQ  = NAME × I ; 
NAME  = STRING ; 
I   = þ(O) ; 
O   = set of operations o. 
 

3. Classification of Input Parameters 
 
Behaviour and resource usage of any system depend 

on its current state, instruction set and input parameters 
for these instructions. Prior to modelling the input 
parameter dependencies, we have analysed what kind 
of parameters normally influence system operation. 
Within the component-based paradigm, we distinguish 
two types of parameters for a component: (a) external 
or environmental parameters, and (b) internal or 
operation arguments.  

External parameters are normally application-level 
attributes. For example, in a video decoding 
application, the external parameter for all rendering 
components (reader, decoder, renderer) can be the 
‘number of pixels per picture’. This attribute is 
predetermined by the format of the actual video 
sequence, thus, by the application. The external 

parameters can be classified into two types: 
configuration and dataflow-based (see Figure 3). 
Configuration parameters provide the means for 
external application control and result in direct settings 
for the component state and behaviour. An example is 
the setting of a ‘perceived quality profile’ for a 
decoding component. Dataflow-based parameters 
(‘number of pixels per picture’) influence the 
component behaviour and resource usage in an indirect 
way. 

 

 
 

Figure 3. Inputs for external parameters 
 
Internal component parameters are arguments of an 

operation o, implemented by service s. Specifying 
internal parameter dependencies gives higher 
prediction accuracy for performance in comparison 
with external parameters, because they are inside of the 
actual code and lead to more fine-grained control. Note 
that in some cases external and internal parameters 
have overlapping influence and cannot be easily 
classified. For example, an operation 
Decoder.decodeFrame(int numberOfPixels) can 
exist, where the ‘number of pixels’ parameter is also an 
internal parameter of a component. 

 
4. Scenario Simulation Approach 

 
In the component-based software development, a 

real-time application developer should satisfy given 
real-time, performance and functional requirements, 
when he builds his application on the basis of available 
components. The scenario simulation approach enables 
early predictions of the performance properties of a 
designed application, which help to reason about its 
quality attributes at early stages of development.  

The approach is based on three concepts:  
1. models of the system component’s behaviour 

and resource usage,  
2. execution scenarios of the complete system, in 

which the resources are potentially 
overloaded,  

3. simulation of these scenarios, resulting in 
timing behaviour of the designed system.  

In order to support the smooth interaction and 
deployment of the above points, we have developed a 



new tool, called Real-Time Integration Environment 
(RTIE).  

The workflow of our approach is described in [11] 
in detail. In this section we focus on the aspects related 
to the input parameter dependencies, its modelling and 
initialisation. 

The implementation of our approach is based on 
four phases (see Figure 4). 
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Figure 4. Workflow phases of the scenario 

simulation approach 
   
Phase 1. A component developer specifies the 

behaviour and resource models of a real-time aware 
component. These models should be supplied along 
with the executables of the component. Within this 
task, a component developer identifies the external and 
internal input parameters that influence the component 
behaviour and resource usage. He finds out 
(empirically or analytically) the cost functions 
Resource_Useoperation = ƒ(parameter)  and 
Behaviouroperation = g(parameter) for each of the 
operations, resource types and parameters. Finally, he 
inserts the cost functions in the component behaviour 
and resource models. The model structures are 
specified in Section 5. 

 
Phase 2. An application (system) developer 

graphically composes a real-time application from the 
set of available components using the RTIE tool. He 
defines resource-critical scenarios and for each of them 
specifies an application scenario model. Critical 
scenarios are the application execution configurations 
that may introduce processor, memory or bus overload. 
Finally, for each critical scenario, a developer 
initialises (gives a value to) all input parameters of the 
constituent components and stores the value into the 
corresponding scenario model. Consequently, the result 
of this phase is a set of critical execution scenarios, 

which sometimes may differ only in the parameter 
values. 

 
 Phase 3. The application scenario, component 

resource and component behaviour models are jointly 
compiled by the RTIE tool. The objective of the 
compilation is to reconstruct (generate) the tasks 
running in the application. Prior to compilation, the 
task-related data is spread over different models. For 
instance, the task periodicity may be specified in an 
application scenario model, whereas the operation call 
sequence comprising the task is specified in relevant 
component behaviour models. The compiler 
reconstructs all necessary properties of the tasks, like 
deadline, period, priority and operation call sequence. 

 
Phase 4. An application developer schedules the 

reconstructed task pool (by the RTIE tool), simulating 
the execution of the defined scenario. The simulation 
scheduling policy of the application execution should 
be compliant with the scheduling policy of the 
operating system. The resulting data from the scheduler 
is a task execution timeline. This timeline allows 
extracting the real-time, memory- and bus-related 
performance properties of an application. A 
comparison between the predicted data with the 
application requirements, allows us to quantitatively 
assess the design of the application. If any of the 
requirements are not satisfied, a developer may 
optimise the composition or find other design 
alternatives and repeat the workflow. 
 
5. Model description 

 
The purpose of this section is to specify the models 

introduced in the previous section. It is emphasized 
here that the models are not a goal by themselves, but 
are required for obtaining the resource consumption 
and timing properties. 
 
5.1. Resource Model 

 
The Resource Model specifies the resource usage 

for all the operations implemented by services of an 
Executable Component (see Figure 5). The resource 
usage properties of an operation may result from either 
average-case or worst-case analysis. These properties 
are calculated only for the operation body itself, and 
they exclude resource consumption properties of called 
operations. This technique allows the calculation of the 
resource consumption of any sequence of operation 
calls. The resource model is specified for a particular 
reference platform. 
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Figure 5. Resource Model Representation 
 

The resource usage can be specified for any type of 
resource. We propose to model scarce major hardware 
resources: processor, memory and bus (network). The 
predicted resource consumption is specified as a 
(claim{bytes}, release{bytes}) tuple for memory; and 
(claim{bytes}, time{ms}) tuple for network-type 
resources. For processing resources, the consumption is 
specified as a single (claim{ms}). 

The resource usage depends on the value of external 
and internal input parameters. These dependencies are 
specified as a cost function. Let us briefly define this in 
more detail. We specify a cost function as the product 
of the operations and the input parameter influencing 
the resource usage of these operations. For each 
resource type r ∈ R, the model provides a function that 
maps a product of the following elements:  

(1) operation implementation,  
(2) vector of values of external parameters and  
(3) vector of values of internal parameters,  

into a sequence of natural numbers that represents the 
resource usage. 

More formally, a cost function (Oimp × VVEP × VVIP 

� Nat*) gives the cost (c � Nat*) for an operation 
(oimp � Oimp). Per resource r there can be multiple cost 
functions þ(Oimp × VVEP × VVIP � Nat*). The resource 
model results in a set of used resources: 
 
R = { ri , ∀ i  |  ri = þ(Oimp × VVEP × VVIP � Nat*)}; 

 
where the parameters are explained by 

Oimp – operation set implemented by the component, 
VVEP is a vector of values of external parameters, 
VVIP is a vector of values of internal parameters, 
Nat* is a sequence of natural numbers (for instance, 
claim and release). 

 
The parameter values are initialized later by 

application developer in the scenario model. 
 
5.2. Behaviour Model 

 
The behaviour model specifies the behaviour of all 

operations Oimp implemented by services of an 
executable component. A part of the model is shown in 
Figure 6. 

 
 

Figure 6. Behaviour Model Representation 
 

Conceptually, the operation behaviour is specified 
as a sequence of external operation calls (to other 
interfaces) made inside the implemented operation. For 
example in Figure 7, the implemented operation 
Controller.updatePosition() has a behaviour 
described by the following call sequence: 
{IData.refreshData(), IControl.move()}. The 
IData and IControl are the interfaces provided by 
Sensor and Actuator services, respectively. 

 

 
 

Figure 7. Sequence of operation calls 
(behaviour) of updatePosition() operation. 



 
The operation behaviour may depend on the input 

parameters. In this case, the component developer can 
model these dependencies by again specifying cost 
functions. For each operation oimp � Oimp implemented 
by the component, the model may provide a function 
that maps a threefold product of: 

1) operation implementation,  
2) vector of values of external parameters and 
3) vector of values of internal parameters,  

into a sequence of external operation calls with a set of 
value vectors of arguments for each external operation. 
More formally, this leads to 

  
BM = (Oimp  × VVEP × VVIP) �  (O × VVIP)*; 
 
where  

Oimp is a set of operations implemented by the 
component, 
O is a set of external operations (provided by other 
interfaces), 
(O × VVIP)* is a sequence of external operation 
calls made by each implemented operation oimp � 
Oimp, 
VVIP is a set of value vectors of internal parameters 
(operation arguments). 
 
The values of the parameters must be initialised 

later in an application scenario model. 
Note that also task triggers can be modelled within a 

behaviour model. The reader is referred to [11] for a 
description of this option. 
 
5.3. Application Scenario Model  

 
The application scenario model (SM) specifies the 

application structure and behaviour for a critical or 
commonly used execution scenario. Several SMs can 
be built for an application, depending on a number of 
scenarios that need to be validated. An application 
developer is responsible for the scenario models 
construction. 

A scenario model consists of a composition 
description, a set of parameter initialisation PI, and a 
set of application-level task triggers T. Composition is 
specified by SI (set of service instances si) and B (set of 
bindings between the si). A binding b � B includes 
information about the bound service instances si � SI, 
and in/out ports of their interfaces pr �  PR, req � 
REQ. Task trigger t � T points to a first called 
operation oimp � Oimp and contains a set of attributes 
ATTR of the trigger (period, offset, jitter, inter-arrival 
time, etc). 

The scenario model should initialise all parameters 
specified in the resource and behaviour models of the 
components used in this scenario. Thus, parameter 
initialisation pi is a given value vEP (vIP) residing within 
the vector of values VVEP (VVIP). The scenario model 
SM is defined by 

 
SM = composition × PI × T; 

 
where 

composition  = SI × B; 
SI  = S × NAME; 
B  = SI × PR × SI × REQ; 
PI  = (VEP � VVEP) x (VIP � VVIP); 
T  = Oimp × ATTR. 
 
Once the scenario models are ready, an application 

developer proceeds to the task reconstruction and 
simulation phases of the workflow. 

 
6. Task Reconstruction 

 
In the task reconstruction phase, an application 

developer brings together the application scenario 
model and combined behaviour-resource models of the 
components used in the application. At this stage, this 
set of models can be compiled by RTIE tool. The goal 
of the compilation is to identify and reconstruct a set of 
tasks with their parameters such that the application 
executes in a particular scenario.  

The task reconstruction algorithm uses only the data 
from the three above-mentioned models. These models 
contain all in-application and in-component task 
triggers, as well as operation call sequences that define 
a flow of control for the tasks fired by the triggers.  

The formal definition of the task reconstruction 
algorithm can be specified as follows. Assume that 
I.o(VIP) is the initial operation invocation of a task t. 
We have omitted brackets for simplicity of notation. 
The operation o is invoked with the initialised values 
for the set of input arguments VIP (a set is indicated by 
a capital). The subsequent invocations made by the 
operation o can be found via the behaviour model of a 
component (service) implementing this operation. The 
function Expand(I.o(VIP)) yields a term that represents 
the call-graph for an invocation I.o(VIP). This resulting 
term includes sub-terms for each individual operation 
invocation. For the operation o invocation the complete 
call-graph can be specified as: 
 

Expand( I.o(VIP) ) =  
I.o(VIP) ⊕ ( Expand(I.o1(VIP1)) ⊗…⊗ 
Expand(I.on(VIP n)) ); 



 
where ⊕ = ‘with the following added’ , 

 ⊗ = ‘sequence’ 
 o1 …on  is a sequence of called operations of  
operation o specified in a behaviour model. 

The result of the above is a tree of operations, where 
the sequence of operations is found when we traverse 
the tree. 

The input parameter dependent call-graph tree 
represents a task in a system. The task invocation 
periodicity, jitter, offset is known from the models. The 
resource claims of the task comprising operations are 
known (they may also be parameter dependent). Thus, 
for a processing resource, we can calculate the task 
execution time as a sum of claims of all operations 
involved in the task call-graph.   

For the controller example in Figure 7, the task 
reconstruction works as follows: the related behaviour 
model specifies the operation call sequence of the 
operation updatePosition(): {refreshData(), 

move()}. Afterwards, the compiler gathers from related 
behaviour models the operation call sequence of the 
latter two operations. The operation refreshData() 
calls one operation belonging to other interfaces: 
ILogData.logEvent()(see Figure 8). 

  

 
 

Figure 8. refreshData() and move() behaviour. 
 
Assume that operation ILogData.logEvent() is a leaf 
operation. The operation move() also calls this leaf 
operation: ILogData.logEvent() (see Figure 8). Thus, 
the complete reconstructed sequence of the operations 
executed in the task is as shown in Figure 9. 

A resource consumption property of each operation 
in this sequence is specified in the claim primitive of 
the related component resource model (see Section 
5.1). Knowing this data, we can calculate the total 
resource consumption of the task. For example, the 
CPU time used by the task (execution time) is the sum 
of CPU times used by the operations composing the 
task. In Figure 9, the total execution time of the task 
amounts to: 50ms + 12ms + 5ms + 80ms + 5ms = 
152ms. 

 

 
 

Figure 9. Task reconstructed from the models. 
 

The other task parameters (period, offset, and 
deadline) and precedence are obtained from the 
corresponding task trigger (Trigger1) properties 
specified in the models. 

 
7. Simulation and Schedulability Analysis 

 
When the set of tasks in the scenario is identified, an 

execution of this set is simulated by the RTIE virtual 
scheduler. The simulation results for a processing 
resource are represented as a task execution timeline 
(see Figure 10). 

 

 
 

Figure 10. Task execution timeline of scenario 
 

The schedulability analysis of the simulation data 
gives the predicted timing and performance properties 
of an application. The response time, blocking time, 
number of missed deadlines can be found for each task. 
Beside this, the processor, memory and bus bandwidth 
utilization bounds can be analysed per application 
scenario. When playing with a range of values for 
specified input parameters, a designer can find resource 
overloading execution scenarios. This may lead to a 
system (application) redesign. In any case, the 
predicted performance properties are to be validated 
with respect to the application requirements. 

 



8. Conclusion 
 

In this paper, we have proposed an extension to an 
already existing scenario simulation approach for the 
prediction of system timing and performance properties 
at early stages of development. The extension enables 
handling a design of real-time systems, of which the 
resource consumption is heavily depending on the input 
data parameters. The extension introduces a concept 
for modelling of two dependency types: (1) input 
parameter influencing the system resource usage, and 
(2) input parameters influencing the behaviour of 
operations in the system. The prediction approach 
should be employed in the domain of component-based 
software development. Therefore, two model 
categories are introduced: a component model 
specified during development of a component 
(behaviour and resource models) and a scenario model 
described during the composition of a system. In the 
component model, the behaviour and resource usage 
are specified as cost functions from the input 
parameters. In the scenario model, these input 
parameters are initialised, resulting in the instances of 
exact behaviour and resource usage per scenario. 
Furthermore, each specified execution scenario can be 
simulated by our recently developed RTIE tool, giving 
a predicted performance of a system.  

We have validated the approach by a real-world 
case study based on an object-oriented MPEG-4 
decoding system [15]. Initial experiments without any 
method calibration give already a prediction accuracy 
on the performance within 10-30%. At the time of 
writing, more experiments are conducted.  

Besides exploring the input data dependencies for 
the prediction accuracy, our proposal has a number of 
additional benefits. The use of scenarios reduces 
modelling complexity and avoids a state-space 
explosion. The proposed technique can be applied to 
any other component-based architecture (CORBA, 
Koala). It can be used for different application domains 
and for various architectural styles. For example, it 
works for ‘blackboard’, ‘client-server’ and ‘pipe-line’ 
architectures. Finally, it is our opinion that the 
proposed approach may lead to higher accuracy when 
incorporating task synchronization constraints and 
distinguishing synchronous and asynchronous 
communication. This aspect requires more research in 
the future. 

The method has some limitations that need further 
study. It provides no techniques for specifying the 
component resource consumption for multiple 
platforms. Besides this, we assume that a designed 
system has no multiple processors and networks. 
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